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Abstract
In the first part we calculate the boundary susceptibility χB in the open XXZ-
chain at zero temperature and arbitrary magnetic field h by the Bethe ansatz.
We present analytical results for the leading terms when |h| � α, where
α is a known scale, and a numerical solution for the entire range of fields.
In the second part we calculate susceptibility profiles near the boundary at
finite temperature T numerically by using the density-matrix renormalization
group for transfer matrices and analytically for T � 1 by field theoretical
methods. Finally, we compare χB at finite temperature with a low-temperature
asymptotics which we obtain by combining our Bethe ansatz result with recent
predictions from bosonization.

PACS numbers: 75.10.Jm, 75.10.Pq, 02.30.Ik

1. Introduction

Even a single impurity can have a drastic effect on the low-energy properties of a one-
dimensional interacting electron system. One of the simplest examples is an antiferromagnetic
spin-1/2 chain with a non-magnetic impurity which cuts the chain and leads to a system
with essentially free boundaries. Because translational invariance is broken, the one-point
correlation function 〈Sz(r)〉 is no longer independent from the site index r and the local
susceptibility χ(r) acquires a nonzero alternating part [1]. Furthermore, the asymptotic
behaviour of correlation functions near such a boundary is no longer governed by the bulk
critical exponents but instead by so-called boundary or surface critical exponents [2, 3]. It is
interesting to consider the case when the spin chain is not cut but instead one of the links is
only slightly weaker.
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Here J > 0, J ′
1,2 > 0 and we have allowed for an XXZ-type anisotropy which is described by

the parameter

� =: cos γ with 0 � � � 1 (0 � γ � π/2). (2)

Using the Jordan–Wigner transformation one can also think about this system as a lattice
model of spinless Fermions with a repulsive density–density interaction

H = J

2

N−1∑
r=1

(
c†rcr+1 + h.c.

)
+ �J

N−1∑
r=1

(
nr − 1

2

)(
nr+1 − 1

2

)
+

J ′
1

2

(
c
†
1cN + h.c.

)
+ �J ′

2

(
n1 − 1

2

)(
nN − 1

2

)
. (3)

Therefore J ′
1 = J − δJ1 corresponds to a weakening of the hopping amplitude whereas

J ′
2 = J − δJ2 gives a weakened density–density interaction along one bond (0 < δJ1,2 � J ).

For all � both perturbations have the same scaling dimension x = K/2 where K = π/(π −γ )

is the Luttinger parameter [4]. Weakening the hopping or the interaction along one bond is
therefore always relevant4. Assuming that the open chain presents the only stable fixed point
one therefore expects that the physics at energies below TK/J ∼ (δJ/J )1/x is governed by
the open XXZ-chain [5]. This is the motivation to consider in the following only the open
boundary condition (OBC) J ′

1 = J ′
2 = 0.

In an open XXZ-chain the free boundaries induce corrections of order 1/N to the bulk
limit5. In particular, a 1/N -term in the susceptibility is expected which we denote hereafter
as boundary susceptibility χB(h, T ). From the scaling arguments given before, it follows
that a long chain with a finite concentration of impurities is effectively cut into pieces of
finite length. Measurements of the susceptibility on such a system will therefore reveal large
contributions from the boundaries. This has inspired a lot of theoretical work to actually
calculate these boundary corrections [7–13]. Very recently the leading contributions to the
boundary susceptibility for h � 1 and T � 1 have been calculated by field theoretical methods
[11, 12]. On the other hand, it is also known that the XXZ-chain with OBC is exactly solvable
by the Bethe ansatz (BA) [14, 15]. For zero temperature, however, only the leading functional
dependence on h for the isotropic case χB(h, T = 0) ∼ 1/h(ln h)2 has been calculated so far
[9, 10, 16]. For finite temperatures de Sa and Tsvelik [7] have applied the thermodynamic
Bethe ansatz (TBA) in the anisotropic case. Evaluating their TBA equations and comparing
with a numerical solution (see section 4), we have found that their results are wrong for all
anisotropies. Even the free Fermion case (see section 2) is not reproduced correctly and there
is also disagreement with the field theoretical results by Fujimoto and Eggert [11] and Furusaki
and Hikihara [12] at low temperatures. Frahm and Zvyagin [16] have treated the isotropic
case with the same TBA technique. Although at least the functional form for low temperatures
is correct, their results are not reliable for high temperatures [17]. This raises the question if
the TBA is applicable at all for OBC or at least which modifications have to be incorporated
compared to the well-known case of periodic boundary conditions (PBC).

Our paper is organized as follows. We start with the simple but instructive free Fermion
case and establish results for the boundary susceptibility both as a function of T and h in
section 2. In section 3 we report the Bethe ansatz solution for T = 0 and anisotropy
0 � � � 1. We present analytical results for the boundary susceptibility at |h| � 1 and a
numerical solution of the BA formulae for arbitrary h. In section 4 we calculate susceptibility

4 For the free Fermion case K = 2 the perturbation becomes marginal.
5 Note that in the periodic case no 1/N corrections exist and the first correction to the bulk limit is of order 1/N2

and determines the central charge [6].
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profiles near the boundary numerically by the density-matrix renormalization group for transfer
matrices (TMRG) and analytically by field theory methods. We also compare our numerical
results for χB(h = 0, T ) with an analytical formula for T � 1 which we obtain by combining
our BA results from section 3 with recent results from bosonization [11, 12]. The last section
presents a summary and conclusions.

2. Free spinless fermions

Here we want to consider the special case � = 0 where equation (3) describes noninteracting
spinless fermions. After Fourier transform, the Hamiltonian takes the form

H =
N∑

n=1

(J cos kn + h)c
†
kn

ckn
with kn = π

N + 1
n (4)

where we have included a magnetic field h. Note that the only difference to PBC are the
momenta kn which, in this case, would be given by kn = 2πn/N . The susceptibility is easily
obtained as

χ(h, T ) = 1

4T

∑
n

cosh−2

[
1

2T
(J cos kn + h)

]
(5)

and using the Euler–MacLaurin formula then yields

χ(h, T ) = χbulk(h, T ) +
1

N
χB(h, T ) + O

(
1

N2

)
with

χbulk(h, T ) = 1

4πT
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0
cosh−2

[
1

2T
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1

2T
(J cos k + h)

]
dk − 1

8T
cosh−2

[
1

2T
(J + h)

]
− 1

8T
cosh−2

[
1

2T
(J − h)

]
.

(6)

Therefore bulk and boundary susceptibility are identical at T = 0 and given by

χbulk(h, T = 0) = χB(h, T = 0) = 1

Jπ

1√
1 − (h/J )2

. (7)

At finite temperatures χbulk and χB are different, however, the additional factors in χB vanish
exponentially for T → 0 so that they still share the same low-temperature asymptotics

χbulk(h = 0, T → 0) = χB(h = 0, T → 0) = 1

Jπ
+

π

6J 3
T 2 + O(T 4). (8)

Figure 1 shows the boundary and bulk susceptibilities for finite temperature at h = 0 and as a
function of h at T = 0 (inset). In the next section we will discuss the BA solution for T = 0.
We will see that a finite interaction between the fermions, � �= 0, has dramatic effects and
χbulk(h, T = 0) and χB(h, T = 0) are no longer identical. For 1/2 � � � 1 we find that
χB(h, T = 0) even diverges for h → 0 whereas χbulk(h = 0, T = 0) remains always finite.

3. The Bethe ansatz solution

In this section we calculate ground-state properties of the model (1), i.e. T = 0. The
Hamiltonian (1) with J ′

1 = J ′
2 = 0 has been diagonalized both by coordinate and algebraic
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Figure 1. Bulk and boundary susceptibilities for free fermions. Note that χ(h, T = 0) diverges
for h → hc = J .

Bethe ansatz [14, 15]. In the following, we refer to the algebraic Bethe ansatz [15]. The
eigenvalues E are parametrized by a set of M-many quantum numbers {λ1, . . . , λM},

E = J

−
M∑

j=1

sin2 γ

cosh(2λj ) − cos γ
+

N − 1

4
cos γ

− hSz (9)

Sz = N/2 − M. (10)

Here, Sz is the total z-component of the spin, h is a magnetic field along the z-direction and we
always assume in the following h � 0 without loss of generality. The anisotropic exchange
constant � is given by equation (2) and the λk are determined by the following set of coupled
algebraic equations

φ(λk + iγ /2)

φ(λk − iγ /2)

a(2λk, γ )a(λk, π/2 − γ /2)a(λk, π/2 − γ /2)

a(2λk,−γ )a(λk,−π/2 + γ /2)a(λk,−π/2 + γ /2)

= −qM(λk + iγ )qM(−λk − iγ )

qM(λk − iγ )qM(−λk + iγ )
, (11)

with the definitions

φ(λ) := sinh2N(λ), a(λ, µ) := sinh(λ + iµ), qM(λ) :=
M∏

j=1

sinh(λ − λj ).

We first deal with the anisotropic case 0 < γ � π/2 and obtain equations for the susceptibility,
which are solved analytically in the limit of small magnetic field. The isotropic case is treated
afterwards. At the end of this section, we present numerical results for the susceptibility at
arbitrary magnetic field.

3.1. Anisotropic case

The solutions to (11) are periodic in the complex plane with period π i, so that we can focus
on a strip parallel to the real axis with width π i. Using arguments of analyticity, one sees that
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there are 2N + 3 + 2M roots in such a strip. So besides the M-many λk which yield the energy
eigenvalues (9), there are 2N + 3 + M additional roots. Consider now the strip with Im λk ∈
]−π/2, π/2] ∀k. We denote the roots in this set by

{
λ1, . . . , λM, λ

(h)
1 , . . . , λ

(h)
2N+M, 0, iπ/2

}
,

where 0 is a double root. It is straightforward to verify that 0, iπ/2 are roots. However,
although these roots solve equation (11), they are not permitted within the algebraic Bethe
ansatz (ABA). The reason is that for these roots, the operators used in the ABA to create
eigenvectors by acting on a reference state are identically zero [15]. A more physical argument
why the roots 0, iπ/2 have to be excluded is obtained from the coordinate Bethe ansatz [14].
Here the roots λj determine the quasiparticle momenta kj

eikj = sinh(iγ /2 − λj )

sinh(iγ /2 + λj )
.

Since translational invariance is broken in the open system, kj = 0, π are not allowed (cf (4) in
the special case of free fermions). These momenta correspond to λj = 0, iπ/2, respectively.

The roots are distributed symmetrically, both with respect to the real and imaginary axes.
In this work we focus on the calculation of the ground-state energy where M = N/2 and
λj ∈ R

>0 ∀j . Then there are N/2 roots λ
(h)
j = −λj , j = 1, . . . , N/2. A numerical evaluation

of (11) shows that the remaining roots λ
(h)
j=N/2+1,...,3N/2

(
λ

(h)

j=3N/2+1,...,5N/2

)
have imaginary

part −iγ /2 (iγ /2). The eigenvalues E are symmetrical in the λj . We thus want to deal
with the set {v1, . . . , vN } := {

λ
(h)
N/2, . . . , λ

(h)
1 , λ1, . . . , λN/2

}
, whose elements are distributed

symmetrically on the real axis w.r.t. the origin. From (11), we find that the vj are the N real
solutions to the equations

φ(vm + iγ /2)

φ(vm − iγ /2)

[
a(vm, π/2 − γ /2)a(vm, γ /2)

a(vm,−π/2 + γ /2)a(vm,−γ /2)

]
= qN(vm + iγ )

qN(vm − iγ )
. (12)

The remaining 2N solutions v
(h)
j are identified as v

(h)
j=1,...,2N ≡ λ

(h)

j=N/2+1,...,5N/2. In (12), the
terms in brackets [· · ·] are due to the OBC. These terms would be absent in the case of PBC.

Our aim is to calculate the 1/N -contribution to the ground-state energy per lattice site
in the thermodynamical limit (TL). As in the PBC case [18, 19], we introduce the density of
roots on the real axis,

�vm
:= vm + vm+1

2
− vm−1 + vm

2
, m = 2, . . . , N − 1

(13)
ρ+(vm) := 1

2N�vm

,

where �vm
is the distance between two points on the left and on the right of the root vm, such

that the left (right) point is situated midway between vm−1, vm (vm, vm+1). From numerical
studies the boundary values of ρ+ are inferred, ρ+(v1) = ρ+(vN) = 0, with ρ+(v1,N )�v1,N

= 1.
Together with (13) it follows that

N∑
m=1

ρ+(vm)�vm
= 1

2
. (14)

In the TL �vm
→ 0 and ρ+(vm) becomes a smooth function. Let us define the interval with

non-vanishing density by [−B,B], i.e. v1 → −B, vN → B in the TL. Then sums over
functions f (vk) are transformed into integrals by

N∑
k=1

1

2N
f (vk) =

∫ B

−B

f (x)ρ+(x) dx − 1

2N
f (0) + O(1/N2),



5962 M Bortz and J Sirker

where the contribution f (0) is subtracted because the algebraic Bethe ansatz fails at the origin.
There are no further O(1/N)-terms because ρ+ vanishes outside the integration boundaries by
definition

ρ+(v) ≡ ρ+(v)θ(−v + B)θ(B + v),

where θ(v) is the Heaviside function. In order to find the continuum version of (12), it is
convenient to define

ρ(v) := ρ+(v) + ρ−(v)

ρ−(v) := ρ(v)(θ(v − B) + θ(−B − v)).

By taking the logarithmic derivative, the continuum version of (12) is obtained

ϑ(x, γ ) +
1

2N
[ϑ(x, γ ) + ϑ(x, π − γ ) + ϑ(x, 2γ )] = ρ(x) +

∫ B

−B

ϑ(x − y, 2γ )ρ+(y) dy,

(15)

where

2π iϑ(x, γ ) := 2i sin γ

cosh 2x − cos γ
= d

dx
ln

sinh(x + iγ /2)

sinh(x − iγ /2)
. (16)

Equation (15) is a linear integral equation with two unknowns, B and ρ. In the first step, (15) is
solved for B = ∞; in the second step, ρ+(x) is obtained depending on the parameter B and the
dependence of B on the magnetic field h is calculated. We will see that B = ∞ corresponds
to h = 0, and a finite magnetic field h > 0 induces a finite B < ∞. Finally, the susceptibility
χ(h) is deduced. This procedure was first used by Takahashi for PBC and is reviewed in [19].

Note that in deriving (15) the range of definition of the involved functions has been
enlarged. All functions in (15) are defined on [−∞,∞]; to calculate physical quantities (like
the ground-state energy), however, we only need to know ρ+, defined on [−B,B]. Actually,
it will be shown later that instead of dealing with ρ+, all quantities we are interested in can be
expressed more conveniently by g+(x) := θ(x)ρ(v + B). The calculation of these functions
is done by Fourier transformation,

ρ(x) = 1

2π

∫ ∞

−∞
ρ̃(k) e−ikx dk.

Let us first consider the case B = ∞, where ρ ≡ ρ+. It is straightforward to solve (15) in
Fourier space, where

ϑ̃(k, γ ) = sinh(π/2 − γ /2)k

sinh πk/2
.

We denote the solution of (15) for B = ∞ by ρ0 and find

ρ̃0(k) = s̃(k) +
1

2N

cosh γ k/4 cosh(π/4 − γ /2)k

cosh γ k/2 cosh(π − γ )k/4
, (17)

with

s̃(k) := 1

2 cosh γ k/2
, s(x) = 1

2γ cosh πx/γ
.

Note that
∫∞
−∞ ρ(x) dx = 1/2 + 1/(2N), in agreement with (14).

We now consider the case B < ∞, i.e., a finite magnetic field. Let us derive the equation
that determines g+. Using (17) we can rewrite (15) as

ρ(x) = ρ0(x) +
∫

|y|>B

κ(x − y)ρ(y) dy (18)
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κ(x) := 1

2π

∫ ∞

−∞

sinh(π/2 − γ )k

2 cosh γ k/2 sinh(π − γ )k/2
e−ikx dk. (19)

We now introduce the functions

ρ(x + B) =: g(x) ≡ g+(x) + g−(x)
(20)

g+(x) = θ(x)g(x), g−(x) = θ(−x)g(x).

Then g(x) satisfies the equation

g(x) = ρ0(x + B) +
∫ ∞

0
κ(x − y)g(y) dy +

∫ ∞

0
κ(x + y + 2B)g(y) dy. (21)

We seek a solution in the limit B � 0, which corresponds to |h| � α, where α is some finite
scale which is calculated later. The driving term ρ0(x + B) can be expanded in powers of
exp[B]. Since (21) is linear in g and ρ0, we make the ansatz g = g(1) + g(2) + · · ·, where
superscripts denote increasing powers of exp[B]. Then

g(1)(x) = [ρ0(x + B)](1) +
∫ ∞

0
κ(x − y)g(1)(y) dy

g(n)(x) = [ρ0(x + B)](n) +
∫ ∞

0
κ(x + y + 2B)g(n−1)(y) dy +

∫ ∞

0
κ(x − y)g(n)(y) dy.

Thus in each order, a linear integral equation of Wiener–Hopf-type has to be solved. This
technique is explained for example in [20, 21]. It relies on the factorization of the kernel κ̃ ,

1 − κ̃ = 1/(G+G−), (22)

where G+ (G−) is analytical in the upper (lower) half plane and has asymptotics
lim|k|→∞ G±(k) = 1. The functions G± are calculated in appendix A. From (20), note
that g̃+ (̃g−) is analytical in the upper (lower) half of the complex plane. Then

g̃(1)
+ (k) = G+(k)[̃ρ0(k)G−(k) e−ikB](1)

+ (23)

g̃(2)
+ (k) = G+(k)

{
[̃ρ0(k)G−(k) e−ikB ](2)

+ + [̃κ(k)̃g(1)(−k)G−(k) e−2ikBG−(k)](2)
+

}
, (24)

where

f±(k) := ± i

2π

∫ ∞

−∞

f (q)

k − q ± iε
dq (25)

is analytical in the upper (subscript +) or lower (subscript −) half of the complex plane such
that f = f+ + f−. We will see later that it is sufficient to know g̃+. In this section we restrict
ourselves to the calculation of g̃

(1)
+ . The calculation of g̃

(2)
+ is sketched in appendix B.

The bracket [· · ·](1)
+ in (23) is evaluated using (25), where only the pole nearest to the real

axis is taken into account. Then we find

g̃(1)
+ (k) =


G+(k)

{
a0

k + iπ/γ
e−π/γB +

1

2N

[
a1

k + iπ/γ
e−πB/γ

+
b1

k + i2π/(π − γ )
e−2πB/(π−γ )

]}
,

(26a)

for γ �= π/3, and

g̃(1)
+ (k) = G+(k)

[
a0

k + i3π
e−3B +

1

2N

c1

k + 3i
B e−3B

]
, (26b)
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for γ = π/3, where the constants are given by

a0 = i

γ
G−(−iπ/γ ) (27a)

a1 =
√

2i

γ
G−(−iπ/γ )

sin π2/(4γ )

cos(π2/(4γ ) − π/4)
(27b)

b1 = 2i

π − γ
tan πγ/(π − γ )G−(−i2π/(π − γ )) (27c)

c1 = i
18

π2
G−(−3i). (27d)

For γ = π/3, terms O(B exp[−B]) occur in the boundary contribution which are absent for
γ �= π/3. These terms are leading compared to those O(exp[−B]) so that these latter have
been neglected for the boundary contribution in (26b).

We are now ready to compute sz := Sz/N and e := E/N from (9), (10):

sz = 1/2 −
∫ B

−B

ρ+(x) dx + 1/(2N) (28)

e = −hsz − J sin γ

2

∫ B

−B

ϑ(x, γ )ρ+(x) dx +
J

4

(
cos γ +

2 − cos γ

N

)
. (29)

We insert (18) into (28) to obtain

sz = π

π − γ
g̃+(0), (30)

which is an exact statement, including all orders g̃(n). It is convenient to calculate e − e0,
where e0 := e(h = 0). We use again (18) which yields

e − e0 = −hsz +
4Jπ sin γ

γ

∫ ∞

0

g+(x)

cosh(x + B)π/γ
dx

= − hπ

π − γ

(̃
g(1)

+ (0) + g̃(2)
+ (0)

)
+

8πJ sin γ

γ

[(̃
g(1)

+ (iπ/γ ) + g̃(2)(iπ/γ )
)

e−πB/γ

− g̃(1)
+ (3iπ/γ ) e−3πB/γ + O(e−3πB/γ g̃(2))

]
, (31)

where in the last equation we restrict ourselves to the given orders. Now B is treated as a
variational parameter and is determined in such a way that

∂

∂B
(e − e0) = 0. (32)

In this section we consider only the leading order in (31). Inserting (26a), (30), (31) into (32),
B is obtained as a function of h,

B = −γ

π
ln

h

α
(33)

α := 2πJ sin γ

γ
(π − γ )

G+(iπ/γ )

G+(0)
. (34)

Thus α sets the scale for h. The restriction to the leading orders in exp[−B] is equivalent to
the leading orders in h in the limit |h| � α.
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One now makes use of (34) to determine sz(h) from (30), and therefrom χ(h) = ∂sz/∂h.
Inserting the explicit expressions for G± from appendix A, we find

χbulk = γ

(π − γ )πJ sin γ
. (35a)

This result is well known, see, for example, [19]. The boundary contribution is given by

χB(h) =


γ

J (π − γ )π
√

2 sin γ

sin π2/(4γ )

cos(π2/(4γ ) − π/4)

+
2γ

√
π

(π − γ )2
tan

πγ

π − γ

1

α

�(π/(π − γ ))

�(1/2 + γ /(π − γ ))
(h/α)−(π−3γ )/(π−γ )

(35b)

for γ �= π/3 with

α = 2J (π − γ )
√

π
sin γ

γ

�(1 + π/(2γ ))

�(1/2 + π/(2γ ))
(35c)

and by

χB(h) = − 1√
3π2

(
ln

4h

27π
+ 1

)
(35d)

for γ = π/3. Note that the first term in (35b), which is independent of magnetic field h, is
the leading contribution for γ > π/3 (pole closest to the real axis in (23)). For γ < π/3 the
second term dominates and, in addition, this term is the next-leading contribution for γ > π/3
(second pole in (23)). For π/7 < γ < π/3 the constant term represents the next-leading
contribution, however, for γ < π/7 a pole at 6π i/(π − γ ) in (23) becomes second nearest to
the real axis and gives the next-leading contribution (see appendix B).

The second term in (35b) is in perfect agreement with the result obtained by conformal
field theory and bosonization in [11, 12]. However, the first, field-independent term has not
been obtained before. Also the result (35d) for the special case γ = π/3 is new. Our results
are in qualitative agreement with the TBA work [7] at T = 0, where also a finite value of
χB(T = 0, h = 0) for γ > π/3 (i.e. � < 1/2) and a divergent contribution with the same
exponent as in (35b) for γ < π/3 (� > 1/2) have been found. However, the coefficients
in (35b) differ from those in [7], due to an incorrect treatment of the Bethe root at spectral
parameter x = 0 in [7] (cf the discussion in section 1).

3.2. Isotropic case

The isotropic case γ = 0 (i.e. � = 1) is treated in the same manner as the anisotropic case
γ �= 0. For the bulk susceptibility, (35a), the limit γ → 0 can be performed directly, yielding
χbulk = 1/Jπ2. For the boundary contribution this limit is more complicated and we describe
the procedure in the following.

First, we rescale (9) by λj → γ λj . This is equivalent to substituting k → k/γ in Fourier
space. Then

s̃(k) = 1

2 cosh k/2
, ρ̃0(k) = s̃(k) +

1

2N

1

2 cosh k/2
(1 + e−|k|/2). (36)

Whereas the analyticity properties of the bulk contribution to (36) are qualitatively the same
as in (17), the boundary contribution shows, besides poles, a cut along the imaginary axis.
In (23), the [· · ·]+ bracket thus yields contributions O(exp[−const B]) from the poles, and
algebraic contributions due to the cut. The exponential contributions are clearly sub-leading
in comparison to the algebraic ones, so only the latter are calculated in the following. Using
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equation (A.2) from appendix A and explicit expressions for G±(k), we find (omitting the
bulk contribution)

g̃(1)
+ (k) =

{
G+(0)(α1/B + α2(ln B)/B2 + α3/B

2) + O((ln B)/B3, 1/B3), k = 0

iα1G+(k)/(kB2), k �= 0

α1 = 1√
2π

, α2 = −
√

2

4π2
, α3 = 1√

2π2

(
ln 2 − 1

2
ln(2π)

)
.

From (30), (31), (32) we obtain

B = − 1

π
ln

h

α
(37)

α−1 = G+(0)

2πJG+(iπ)
. (38)

These equations are obtained by those from the anisotropic case, (33), (34), by scaling
B → γB and sending γ → 0 afterwards. Carrying out the same steps which lead to (35b),
one finds the boundary contribution

sz
B(h) = −1

4

(
1

ln h/h0
+

ln|ln h/h0|
2 ln2 h/h0

)
+ O(ln−2 h) (39)

χB(h) = 1

4

(
1

h ln2 h/h0
+

ln|ln h/h0|
h ln3 h/h0

− 1

2h ln3 h/h0

)
+ O

(
1

h ln3 h

)
(40)

h0 = α/
√

2 = Jπ
√

π/ e. (41)

The scale h0 has been chosen such that in (39), no terms O(ln−2 h) occur. The results (40),
(41) agree with the TBA work by Frahm et al [16] for T = 0. Furthermore, agreement is
found with [9, 11, 12], where scales which differ from ours (41) by a constant factor were
used.

3.3. Numerical evaluation

To obtain results for the case when |h| �� α, (15) has to be solved numerically. For this
purpose the bulk and boundary contributions to ρ(x) in equation (15) are treated separately.
Both can be evaluated numerically for arbitrary values of B. The corresponding value for h is
then derived from the minimum condition (32). This finally yields sz(h) and therefrom χ(h),
cf equation (28). The result for the bulk susceptibility is shown in figure 2, together with the
h = 0 values (35a). The boundary susceptibility is shown in figure 3 (figure 4) for � < 1/2
(� > 1/2). In both cases, the numerical solution confirms the analytical findings in the limit
|h| � α.

4. Finite temperatures

In the preceding section we calculated ground-state properties by making use of the
integrability of the Hamiltonian (1) with J ′

1 = J ′
2 = 0. The next step would be to exploit

integrability in order to calculate finite-temperature properties. However, the TBA seems to
be problematic for systems with OBC as discussed in the introduction. The other available
technique, namely the quantum-transfer-matrix-approach (QTM) [22], has not been applied to
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Figure 2. Bulk susceptibility from a numerical solution of equation (15). The diamonds denote
the h = 0 values according to (35a). Note that the h = 0 value is approached with infinite slope
in the isotropic case due to logarithmic terms, cf equation (B.17).
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Figure 3. (a) χB(h) for � = 0.0, . . . , 0.4. The stars denote the h = 0 values according to
equation (35b). (b) Comparison between the numerical solution (dots) of equation (15) and the
asymptotics (dashed lines) for |h| � α (equation (35b)).

open systems so far. The problem to modify the TBA appropriately for OBC (if it is applicable
at all) and the challenge to apply the QTM method for OBC remain open issues for future
research. Here, we use field theoretical arguments combined with a numerical study to discuss
finite temperatures.

First, we want to present a way different from section 3 to calculate the boundary
susceptibility. Because translational invariance is broken in a system with OBC the one-
point correlation function 〈Sz(r)〉 is no longer a constant. The excess magnetization caused
by the boundary can be defined as

Mexc(r) = 〈Sz(r)〉OBC − MPBC, (42)
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Figure 4. (a) χB(h) for � = 0.5, . . . , 1.0. (b) Comparison between the numerical solution (dots)
of equation (15) and the asymptotics (dashed lines) for |h| � α (equation (35b)).

where MPBC is the magnetization per site in the system with PBC and r is the distance from
the boundary. The local boundary susceptibility is then given by χB(r) = ∂Mexc(r)/∂h and
the total boundary susceptibility χB can be obtained by

χB =
∞∑

r=1

χB(r) = χOBC − χPBC. (43)

This means that we can calculate χB by considering only a local quantity which is particularly
useful in numerical calculations where it is difficult to obtain the 1/N contribution directly.
Particularly suited for this purpose is the density-matrix renormalization group applied to
transfer matrices (TMRG) because the thermodynamic limit is performed exactly. The idea
of the TMRG is to express the partition function Z of a one-dimensional quantum model by
that of an equivalent two-dimensional classical model which can be derived by the Trotter–
Suzuki formula [23, 24]. For the classical model a suitable transfer matrix T can be defined
which allows for the calculation of all thermodynamic quantities in the thermodynamic limit
by considering solely the largest eigenvalue of this transfer matrix. Details of the algorithm
can be found in [25–28]. The method has been extended to impurity problems in [29]. In
particular, the local magnetization at a distance r from the boundary of a system with N sites
is given by

〈Sz(r)〉 =
∑

n

〈
�n

L

∣∣T (Sz)T r−1T̃ T N−r−1
∣∣�n

R

〉∑
n

〈
�n

L

∣∣T N−1T̃
∣∣�n

R

〉 , (44)

where
∣∣�n

R

〉 (〈
�n

L

∣∣) are the right (left) eigenstates of the transfer matrix T , T̃ is a modified
transfer matrix containing the broken bond and T (Sz) is the transfer matrix with the operator
Sz included. Because the spectrum of T has a gap between the leading eigenvalue �0 and the
next-leading eigenvalues, equation (44) reduces in the thermodynamic limit to

lim
N→∞

〈Sz(r)〉 =
〈
�0

L

∣∣T (Sz)T r−1T̃
∣∣�0

R

〉
�r

0

〈
�0

L

∣∣T̃ ∣∣�0
R

〉 . (45)

Therefore, only the leading eigenvalue and the corresponding eigenvectors have to be known
to calculate the local magnetization in the thermodynamic limit. Far away from the boundary
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Figure 5. Susceptibility profile for � = 0.6. The lines are a guide to the eye.

〈Sz(r)〉 becomes a constant, the bulk magnetization

m = lim
r→∞ lim

N→∞
〈Sz(r)〉 = lim

r→∞

∑
n

〈
�0

L

∣∣T (Sz)T r−1
∣∣�n

R

〉〈
�n

L

∣∣T̃ ∣∣�0
R

〉
�r

0

〈
�0

L

∣∣T̃ ∣∣�0
R

〉
=
〈
�0

L

∣∣T (Sz)
∣∣�0

R

〉
�0

. (46)

To obtain numerically the susceptibility profile χB(r) at h = 0, we calculate Mexc(r) for
small fields h/J ∼ 10−2 to 10−3 by using equations (45), (46) and taking the numerical
derivative. As an example we show in figure 5 the susceptibility profile for � = 0.6 at various
temperatures. At sufficiently low temperatures the susceptibility profile exhibits a maximum.
This maximum gets shifted further away from the boundary as the temperature is lowered.
The dependence of χB(r) on � at fixed temperature is shown in figure 6. Here the maximum
becomes more pronounced with increasing � and is at the same time shifted further into the
chain.

Next we want to compare the numerics with field theory predictions. We start with
the bulk two-point correlation function 〈Sz(r)Sz(0)〉. The leading term in the long distance
asymptotics of this function at zero temperature is known to be given by [30–34]

〈Sz(r)Sz(0)〉 ∼ A
cos(2kF r + φ)

r2x
, (47)

with an amplitude A and phase φ. The Fermi momentum is given by kF = π(1 ± 2m)/2
and the scaling dimension by x = K/2. The usual mapping of the complex plane onto a
semi-infinite cylinder then implies for small temperatures

〈Sz(r)Sz(0)〉 ∼ A
cos(2kF r + φ)(
vs

πT
sinh πT r

vs

)K . (48)

Using Cardy’s relation between 2n-point functions in the bulk and n-point functions near a
surface [2], one can now directly obtain the magnetization near the boundary

〈Sz(r)〉 ∼ Ã
cos(2kF r + φ̃)(
vs

πT
sinh 2πT r

vs

)K/2 . (49)
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Figure 6. Susceptibility profiles for different � at T/J = 0.013 87. The TMRG data are denoted
by circles, the lines are the field theory results according to equation (51) and the dashed lines are
the field theory results shifted by some lattice spacings (see text below).

Note that although the critical exponent is only half the exponent appearing in the two-point
bulk correlation function both decay exponentially with exactly the same correlation length
ξ = vs/(2πxT ). With the known result for the bulk susceptibility χbulk(h = 0) = K/2πvs ,
we obtain

〈Sz(r)〉 ∼ Ã
(−1)r sin(Khr/vs)(

vs

πT
sinh 2πT r

vs

)K/2 for h � 1

and

χB(r)|h=0 ∼ ÃK

vs

(−1)rr(
vs

πT
sinh 2πT r

vs

)K/2 . (50)

This is the leading contribution to the boundary susceptibility. Note that equation (50) agrees
for the special case � = 1 with the result given in [1]. The amplitude depends only on the
operator product expansion of Sz and is given by Ã = √

Az/2 where Az has been derived
by Lukyanov and Terras [34] (see equation (4.3)). However, this alternating term does not
contribute when calculating χB by integrating over all lattice sites. The leading non-oscillating
contribution has already been obtained by Fujimoto and Eggert [11] and Furusaki and Hikihara
[12]. Including this term we find for the susceptibility profile

χB(r)|h=0 ∼
√

Az

2

K

vs

(−1)r r(
vs

πT
sinh 2πT r

vs

)K/2 +
4K2λ

v2
s

r2(
vs

πT
sinh 2πT r

vs

)2K
, (51)

where the amplitude λ is given in [34, 12]. This field theory result is shown as straight lines in
figure 6 in comparison to the numerics. For all � the shape of the curves agrees well with the
numerical results. However, especially at larger � the height of the maximum is overestimated
and there is also a shift by a few lattice sites. When we shift the theoretical curves by an
appropriate amount of lattice spacings (dashed lines in figure 6), we see that the predicted
exponential decay for larger distances agrees perfectly with the numerical data.

First, we should note that we cannot expect that the field theoretical treatment yields
reliable results for short distances. In addition, the next-leading alternating terms in the
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Figure 7. Comparison between TMRG (circles) and the low-temperature asymptotics (lines)
according to (52) for � = 0.1, . . . , 0.4.
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Figure 8. Same as figure 7 with � = 0.6, . . . , 0.9.

asymptotic expansion of the bulk two-point correlation function will become more and more
important as � → 1 [34]. This makes our approximation to take only the leading term (47) into
account apparently worse for larger �. In fact, shifting the field theoretical result is equivalent
to taking contributions with larger scaling dimensions into account. Our observation that the
shift increases with increasing � is therefore consistent with the increasing importance of
next-leading terms. We also want to mention that a similar shift has been observed before for
the isotropic case [1].

Finally, we want to discuss the total boundary susceptibility χB at finite temperature. To
calculate it numerically we have, in principle, to sum χB(r) over all lattice sites. However, at
the lowest considered temperature the correlation length ξ < 50 and it is sufficient to take the
sum over the first 200 sites around the boundary. The results for � = 0.1–0.4 are shown in
figure 7 and for � = 0.6–0.9 in figure 8. For the low-temperature asymptotics we already know
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from our Bethe ansatz calculations that there is a temperature and magnetic field independent
term which dominates for � < 0.5. In addition, there is a temperature-dependent contribution
which stems from the integral over all lattice sites of the non-oscillating term in equation (51)
and dominates for � > 0.5. This integral has already been calculated in [11, 12], yielding the
leading temperature-dependent contribution to χB(T ). However, the constant term cannot be
calculated within the field theoretical framework. Our knowledge of this term from the BA
calculations in the previous section allows us to obtain a low-temperature asymptotics which
is valid for all 0 � � < 1. This asymptotics is given by

χB(T , h = 0) = K − 1

J
√

2π sin(K − 1)

sin π
4

K
K−1

cos π
4

1
K−1

+ λ
K�(K)�(3 − 2K)(π2 − 2� ′(K))

4v2(2 − 1/K)�(2 − K)

(
2πT

v

)2K−3

, (52)

where � ′(x) = d2 ln �(x)/dx2. The first term is our BA result, equation (35b), where we
have substituted γ = π(K − 1)/K . The second term is the leading temperature-dependent
contribution taken from [11, 12]. As in the case h �= 0, T = 0, we expect that these are the
leading and the sub-leading contributions for � � 0.9. For larger � we expect that other
temperature-dependent terms will become more important than the constant term and we have
to omit it in this case to stay consistent. Note that the leading temperature-dependent term has
the same exponent 2K−3 as the leading magnetic field dependent term in equation (35b). This
is consistent with scaling arguments. The lines in figures 7 and 8 denote the low-T asymptotics
according to this formula and are in excellent agreement with the numerics except for � = 0.9
where the asymptotic limit at the lowest considered T is not yet reached. However, this is
expected due to the afore mentioned other temperature-dependent terms which will become
sub-leading for � � 0.9 and even equally important as the term with exponent 2K − 3 for
� → 1, yielding finally a logarithmic dependence on temperature [11, 12].

5. Conclusions

In the first part we have calculated the boundary contribution to the magnetic susceptibility
of the XXZ-chain with OBC at zero temperature and finite magnetic field by BA. For small
magnetic fields and γ < π/3 (� > 1/2) the BA result for the leading divergent term agrees
with the field theoretical analysis [11, 12]. For γ > π/3 (� < 1/2) a field-independent term
is dominating. This term has not been obtained before. We also derived for the first time
the leading term for the special case γ = π/3 (� = 1/2). In addition, we have presented
a numerical solution of the BA equations for arbitrary field h. We used the numerics for a
verification of our analytical results for |h| � α.

In the second part we have calculated numerically susceptibility profiles near the boundary
by the TMRG method and compared these results with a low-temperature asymptotics which
we obtained by field theoretical methods. Apart from a shift by a few lattice sites we have found
good agreement. By combining a temperature and magnetic field independent term, which we
obtained by BA and which is dominating for � < 1/2, with the leading temperature-dependent
term, which has been calculated in [11, 12] and dominates for � > 1/2, we have obtained a
low-temperature asymptotics for χB(T ) which is valid for all 0 � � < 1. Numerically, χB(T )

has been obtained by a summation of χB(r, T ) over a sufficient number of sites around the
boundary. At low temperatures, excellent agreement with the analytical formula was found.
The remaining challenge is to calculate the finite-temperature properties analytically by using
the integrability of the model, either by TBA or by the QTM method.
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Appendix A. Factorization of the kernel

Let us first carry out the factorization (22) for the anisotropic case

1

G+(k)G−(k)
= sinh πk/2

2 cosh γ k/2 sinh(π − γ )k/2
, G−(k) = G+(−k).

Using properties of the � function, we find

G+(k) =
√

2(π − γ )
�(1 − ik/2)

�(1/2 − iγ k/(2π))�(1 − ik(π − γ )/(2π))
e−iak

a = 1

2

[γ
π

ln(π/γ − 1) − ln(1 − γ /π)
]
,

where a is determined such that lim|k|→∞ G±(k) = 1.
As already mentioned in section 3.2, the isotropic limit is realized by scaling k → k/γ ;

thus, for γ = 0,

1

G+(k)G−(k)
= e|k|/2

2 cosh k/2
. (A.1)

By making use of

−|k|
2

= ik

2π
ln ik − ik

2π
ln(−ik), (A.2)

the exponential in (A.1) is factorized in functions analytical in the upper and lower half planes
with

G+(k) =
√

2π
(−ik)−ik/(2π)

�(1/2 + ik/(2π))
e−iak, a = − 1

2π
− ln(2π)

2π
.

Appendix B. Next-leading orders

Our focus here is on the anisotropic case; we comment on the isotropic case at the end of this
appendix.

The calculation of the next-leading order, i.e. of g̃(2) in (24), is technically more involved
than the leading order g̃(1), because there are two contributions in (24). The calculation is
done following the same steps as in section 3, so that we merely give the results here.

The [· · ·]+ brackets in (24) are evaluated using the integral representation (25). Now,
the pole next-nearest to the real axis is taken into account in the first summand in (24). The
second term already contains a factor exp[−2ikB], so that the pole next to the real axis yields
the leading contribution. Thus we find, for γ �= π/3,
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g̃(2)
+ (k) = G+(k)

{(
a0,1

k + i3π/γ
+

a0,2

k + iπ/γ

)
e−3πB/γ +

a0,3

k + i2π/(π − γ )
e−(π/γ +4π/(π−γ ))B

+
1

2N

[(
a1,1

k + i3π/γ
+

a1,2

k + iπ/γ

)
e−3πB/γ

+
a1,3

k + i2π/(π − γ )
e−(π/γ +4π/(π−γ ))B +

(
b1,1

k + i6π/(π − γ )

+
b1,3

k + i2π/(π − γ )

)
e−6π/(π−γ )B +

b1,2

k + iπ/γ
e−2(π/γ +π/(π−γ ))B

]}
(B.1)

a0,1 = − i

γ
G−

(
−i

3π

γ

)
(B.2)

a0,2 = i

2γπ
tan

π2

2γ
G3

−

(
−i

π

γ

)
(B.3)

a0,3 = i

π(π + γ )
tan

πγ

π − γ
G−

(
−i

π

γ

)
G2

−

(
−i

2π

π − γ

)
(B.4)

a1,1 = i
2 sin π/4 sin 3π2/(4γ )

γ cos(3π2/(4γ ) + π/4)
G−

(
−i

3π

γ

)
(B.5)

a1,2 = a1

2π
tan

π2

2γ
G2

−

(
−i

π

γ

)
(B.6)

a1,3 = a1γ

π(π + γ )
tan

πγ

π − γ
G2

−

(
−i

2π

π − γ

)
(B.7)

b1,1 = i
2

π − γ
tan

3γπ

π − γ
G−

(
−i

6π

π − γ

)
(B.8)

b1,2 = b1(π − γ )

π(π + γ )
tan

π2

2γ
G2

−

(
−i

π

γ

)
(B.9)

b1,3 = b1

4π
tan

πγ

π − γ
G2

−

(
−i

2π

π − γ

)
, (B.10)

and, for γ = π/3,

g̃(2)
+ (k) = G+(k)

{
a0,4

k + 3i
B e−9B +

1

2N

[ c1,1

k + 9i
B e−9B +

c1,2

k + 3i
B2 e−9B

]}
(B.11)

a0,4 = i
9

π3
G3

−(−3i), c1,1 = i
18

π2
G−(−9i), c1,2 = 3c1

π2
G2

−(−3i).

This expression for g̃2 is inserted into (31), where we now have to keep all the indicated
terms6. Then B as a function of h is derived. In section 3, we found that this relationship is
the same both for the boundary and for the bulk in the leading order. This is no longer true

6 It is indeed sufficient to restrict the expansion of the 1/cosh(x + B) factor in (31) to the first two orders. The next
term would involve the exponent 5π/γ . Comparing with the largest exponent in (B.1), 5π/γ > π/γ + 4π/(π − γ )

for γ < π/2. However, γ = π/2 is allowed since in this case, all coefficients except a0,1, a1,1 vanish.
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when next-leading terms are considered. For the bulk we obtain

α e−πB/γ = h

1 + A1

(
h

α

)2

+ A2

(
h

α

)4γ /(π−γ )

+

[
1

3

a0,4

a0

(
h

α

)2

ln
h

α

]
γ=π/3

 (B.12)

A1 = a0,2

a0
+

G−(−i3π/γ )

G−(−iπ/γ )
, A2 = π − γ

2γ

a0,3

a0

and for the boundary

α e−πB/γ = h

(
1 + A1

(
h

α

)2

+ A2

(
h

α

)4γ /(π−γ )

+ B1

(
h

α

)−1+6γ /(π−γ )

+ B2

(
h

α

)1+2γ /(π−γ )

+

[
c1,2

3a1

(
h

α

)2

ln2 h

α
+

c1

3

G−(−9i)

G−(−3i)

(
h

α

)2

ln
h

α

]
γ=π/3

 (B.13)

A1 = a1,2

a1
+

G−(−i3π/γ )

G−(−iπ/γ )
, A2 = π − γ

2γ

a1,3

a1

B1 = 2(π − γ )

π + γ

b1,3

a1
, B2 = π + γ

2(π − γ )

b1,2

a1
+

G−(−i3π/γ )

G−(−iπ/γ )

b1

a1
.

In (B.12), (B.13) and in the following, for γ = π/3, the only next-leading terms are those
labelled by [· · ·]γ=π/3. Combining these equations with (30), one finds

sz
bulk(h) =

√
2

π(π − γ )

G−(−iπ/γ )
h

α
+

(
1

π
tan

π2

2γ
G3

−

(
−i

π

γ

)
− 1

3
G−

(
−i

3π

γ

)

+
G+(i3π/γ )G+(iπ/γ )

G+(0)

)(
h

α

)3

+
π − γ

π(π + γ )
tan

πγ

π − γ
G−

(
−i

π

γ

)

×G2
−

(
−i

2π

π − γ

)(
h

α

)1+4γ /(π−γ )

−
[

2

π2
G3

+(3i)

(
h

α

)3

ln
h

α

]
γ=π/3


(B.14)

2sz
B(h) = −i

√
2

π(π − γ )

{
γ a1

h

α
+

π − γ

2
b1

(
h

α

)2γ /(π−γ )

×
(

2γ a1,2 +
γ

3
a1,1 + γ a1

G+(i3π/γ )

G+(iπ/γ )

)(
h

α

)3

+

(
(π − γ )a1,3 +

π + γ

2(π − γ )

b2
1b1,2

a1
+ γ

b3
1

a1

G+(i3π/g)

G+(iπ/g)

)(
h

α

)1+4γ /(π−γ )

+

(
2γ (π − γ )

π + γ
b1,3 +

π − γ

6
b1,1 +

π − γ

2
b1,3 +

π − γ

2

b1a1,3

a1

)(
h

α

)6γ /(π−γ )

+

(
γ (3π − γ )

2(π − γ )
b1,2 +

2γ 2

π − γ

b1a1,2

a1
+

γ (π + γ )

π − γ

G+(i3π/γ )

G+(iπ/γ )

)(
h

α

)2+2γ /(π−γ )

+
2γ (π − γ )

π + γ

b1,3

a1

(
h

α

)8γ /(π−γ )−1
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+ π

[
c1

9

h

α
ln

h

α
+

(
c1c1,2

35a1
+

c1,2

27

)(
h

α

)3

ln2 h

α

+

(
c2

1

9a1

G+(9i)

G+(3i)
+

c1,1

27i

)(
h

α

)3

ln
h

α

]
γ=π/3

 . (B.15)

From these expressions, χ can be obtained. Let us consider the special case of free Fermions,
i.e., γ = π/2. Equation (19) implies κ ≡ 0 so that G+ ≡ G− ≡ 1. Furthermore, from
(27a)–(27d), (B.1)–(B.10), the only non-vanishing coefficients are

a0 = i
2

π
, a1 = i

4

π
, a0,1 = −i

2

π
, a1,1 = −i

4

π
,

so that

g̃(1)
+ (k) + g̃(2)

+ (k) = i
2

π

(
1

k + 2i
e−2B − 1

k + 6i
e−6B

)(
1 +

1

N

)
+ O(e−6B).

Note that this is the expansion of ρ0(x + B) in Fourier space. Equations (B.12), (B.13) are
equivalent in the free Fermion case and yield

e−2B = h

α

(
1 +

(
h

α

))
+ O(h2).

Finally, the sum of (B.14), (B.15) can be simplified to

sz(h) = 2

π

(
h

α
+

2

3

(
h

α

)3
)(

1 +
1

N

)
+ O(h3)

(B.16)

χ(h) = 1

π

(
1 +

1

2
h2

)(
1 +

1

N

)
+ O(h2),

where we have set α = 2J for γ = π/2. Equation (B.16) is in agreement with the exact result
(7) within the first two orders.

As far as the isotropic case γ = 0 is concerned, note that (39), (40) include already next-
leading terms for the boundary magnetization and susceptibility. Logarithmic corrections
to the finite bulk susceptibility, equation (35a) with γ = 0, have been calculated by BA
techniques for PBC [35]:

χbulk(h) = 1

Jπ2

[
1 +

1

2 ln(̃h0/h)
− ln ln(̃h0/h)

4(ln(̃h0/h))2

]
+ O(ln−2(h)), (B.17)

with h̃0 = α e−1/8π−1/4. The scale h̃0 has been determined such that no terms O(ln−2 h)

appear in (B.17).
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